Activation of AKT by O-linked N-acetylglucosamine induces vascular calcification in diabetes mellitus.

نویسندگان

  • Jack M Heath
  • Yong Sun
  • Kaiyu Yuan
  • Wayne E Bradley
  • Silvio Litovsky
  • Louis J Dell'Italia
  • John C Chatham
  • Hui Wu
  • Yabing Chen
چکیده

RATIONALE Vascular calcification is a serious cardiovascular complication that contributes to the increased morbidity and mortality of patients with diabetes mellitus. Hyperglycemia, a hallmark of diabetes mellitus, is associated with increased vascular calcification and increased modification of proteins by O-linked N-acetylglucosamine (O-GlcNAcylation). OBJECTIVE We sought to determine the role of protein O-GlcNAcylation in regulating vascular calcification and the underlying mechanisms. METHODS AND RESULTS Low-dose streptozotocin-induced diabetic mice exhibited increased aortic O-GlcNAcylation and vascular calcification, which was also associated with impaired aortic compliance in mice. Elevation of O-GlcNAcylation by administration of Thiamet-G, a potent inhibitor for O-GlcNAcase that removes O-GlcNAcylation, further accelerated vascular calcification and worsened aortic compliance of diabetic mice in vivo. Increased O-GlcNAcylation, either by Thiamet-G or O-GlcNAcase knockdown, promoted calcification of primary mouse vascular smooth muscle cells. Increased O-GlcNAcylation in diabetic arteries or in the O-GlcNAcase knockdown vascular smooth muscle cell upregulated expression of the osteogenic transcription factor Runx2 and enhanced activation of AKT. O-GlcNAcylation of AKT at two new sites, T430 and T479, promoted AKT phosphorylation, which in turn enhanced vascular smooth muscle cell calcification. Site-directed mutation of AKT at T430 and T479 decreased O-GlcNAcylation, inhibited phosphorylation of AKT at S473 and binding of mammalian target of rapamycin complex 2 to AKT, and subsequently blocked Runx2 transactivity and vascular smooth muscle cell calcification. CONCLUSIONS O-GlcNAcylation of AKT at 2 new sites enhanced AKT phosphorylation and activation, thus promoting vascular calcification. Our studies have identified a novel causative effect of O-GlcNAcylation in regulating vascular calcification in diabetes mellitus and uncovered a key molecular mechanism underlying O-GlcNAcylation-mediated activation of AKT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells.

OBJECTIVE Glucose flux through the hexosamine biosynthesis pathway (HBP) has been implicated in the development of diabetic vascular complications. O-linked N-acetylglucosamine (O-GlcNAc) modification on protein is the major mechanism mediating the actions of the HBP. Impaired angiogenesis is well-recognized in diabetes; however, the mechanisms are not completely defined. Here, we investigated ...

متن کامل

Inhibition of FOXO1/3 promotes vascular calcification.

OBJECTIVE Vascular calcification is a characteristic feature of atherosclerosis, diabetes mellitus, and end-stage renal disease. We have demonstrated that activation of protein kinase B (AKT) upregulates runt-related transcription factor 2 (Runx2), a key osteogenic transcription factor that is crucial for calcification of vascular smooth muscle cells (VSMC). Using mice with SMC-specific deletio...

متن کامل

Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site.

Endothelial nitric oxide synthase (eNOS) is activated by phosphorylation of serine 1177 by the protein kinase Akt/PKB. Since hyperglycemia-induced mitochondrial superoxide overproduction increases O-linked N-acetylglucosamine modification and decreases O-linked phosphorylation of the transcription factor Sp1, the effect of hyperglycemia and the hexosamine pathway on eNOS was evaluated. In bovin...

متن کامل

Protein O-linked β-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function.

The post-translational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide β-N-acetyl-glucosamine (O-GlcNAc) is emerging as an important mechanism for the regulation of numerous biological processes critical for normal cell function. Active synthesis of O-GlcNAc is essential for cell viability and acute activation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 114 7  شماره 

صفحات  -

تاریخ انتشار 2014